Llama.cpp Local AI Server ULTIMATE Setup Guide on Proxmox 9



Date: 08/25/2025

Watch the Video

Okay, this video is exactly what I’ve been digging into! It’s a hands-on guide to setting up a local AI server using llama.cpp within an LXC container, leveraging the power of multiple GPUs (quad 3090s in this case!). The video walks through the whole process, from installing the NVIDIA toolkit and drivers to actually building llama.cpp, downloading LLMs from Hugging Face (specifically, models from Unsloth, known for efficient fine-tuning), and running both CPU and GPU inference. Plus, it shows how to connect it all to OpenWEBUI for a slick user interface.

Why is this valuable? Because it tackles the practical side of running LLMs locally. We’re talking about moving beyond just using cloud-based APIs to having full control over your AI infrastructure. This means data privacy, offline capabilities, and potentially significant cost savings compared to constantly hitting cloud endpoints. And the fact that it uses Unsloth models is huge – it’s all about maximizing performance and efficiency, something that’s key when you’re dealing with resource-intensive tasks.

Think about it: you could use this setup to automate code generation, documentation, or even complex data analysis tasks, all within your local environment. I’m particularly excited about experimenting with integrating this with Laravel Forge for automated deployment workflows. Imagine pushing code, and the server automatically optimizes and deploys AI-powered features with this local setup. The video is worth a shot if, like me, you’re itching to move from theoretical AI to practical, in-house solutions. It really democratizes access to powerful LLMs.